

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2017
Lab 03 – Simple Decisions

Assignment: Lab 03 – Simple Decisions
Due Date: During discussion, February 13th through February 16th
Value: 10 points (8 points during lab, 2 points for Pre Lab quiz)

In Lab 2, you did some basic programming and learned how to find and fix
errors in Python code. This week’s lab will put into practice some of the
material learned in class, including expressions, user input, Python’s operators,
and simple decision structures.
(Having concepts explained in a new and different way can often lead to a
better understanding, so make sure to pay attention.)

CMSC 201 – Computer Science I for Majors Page 2

Part 1A: Review – Using Variables and Expressions

Using variables in Python is easy! There are just two important rules we have
to remember:

1. Use meaningful variable names! For example, numberOfBooks is a

much better variable name than NOB or numb or x. Something like

numBooks would also work, if you want to keep it a bit shorter.

2. Before we can use a variable, it must be initialized. In other words, we
have to put a value into the “box” before we can start using the variable.
We do this using the assignment operator, or equals sign (=).

For example:
booksPerShelf = 50

numberOfShelves = 22

sizeOfLibrary = booksPerShelf * numShelves

We had to initialize the values of the variables booksPerShelf

and numShelves before we could use them to calculate the size

of the library.

Here are some more examples of variables:

address = "1000 Hilltop Circle"

biggestDinosaur = "Argentinosaurus"

minimumWageMD = 8.75

An expression is code that calculates or produces new data and data values.
Expressions are what allow us to create interesting Python programs. The
word “expression” is really just a fancy name for something that can be
evaluated to a single value.

One important thing to remember is that expressions must always be on
the right hand side of the assignment operator!

Here are a few examples of expressions:

numStudents = 300 + 20

totalPrice = numCookies * priceOfCookie

numHours = numDays * 24

triangleArea = (1/2) * triangleBase * triangleHeight

CMSC 201 – Computer Science I for Majors Page 3

Part 1B: Review – User Input and Casting

User input is a way to get information from the user after you've finished writing
your program. Much like expressions, user input is an important step in
creating Python programs that do interesting things.

The Python code to get input from the user will look something like this:

userName = input("Enter your name please: ")

When your program is run, this code will print out the message "Enter your

name please: " to the screen. After the user puts in their answer and hits

enter, the text they entered will be stored as the value of userName.

However, if the user enters an integer, the value will be automatically stored as
a string. However, we can’t do addition or multiplication with a string. (Python
treats integers and strings very differently!)

We can fix this by telling the program that the input should be stored as an
integer. Doing this is called casting, a process in which Python changes a
variable from one type to another. For example, if we want to convert the
user’s age to an integer, we could write something like this:

userAge = int(input("Enter your age please: "))

If we wanted their GPA (which would be a decimal number, which Python calls
a float) we could write something like this:

userGPA = float(input("Enter your GPA please: "))

CMSC 201 – Computer Science I for Majors Page 4

Part 1C: Review – Comparison Operators

Mastery of logic is essential to understanding conditional statements. It is
used in pretty much any program that you will ever write. Comparisons are
the heart of logical statements. When we write programs, we often want to
compare two pieces of information, testing to see if that comparison evaluates
to True or False.

We can make those comparisons using any of the following comparison
operators, which compare two pieces of information:

 < (less than)

 > (greater than)

 <= (less than or equal to)

 >= (greater than or equal to)

 == (equivalent to)

 != (not equal to) also known as “bang” equals

For example:
num = 500 # Set the value of num

num < 1000 # This evaluates to True

1456 >= num # This evaluates to True

300 != 300 # This evaluates to False

"hello" == "goodbye" # This evaluates to False

Notice how you can mix variables and “raw” data and still make valid
comparisons. Unlike the assignment operator (=), it doesn’t matter what goes

on the left hand or right hand side of a comparison operator.

CMSC 201 – Computer Science I for Majors Page 5

Part 1D: Review – Logical Operators

You can also combine two or more comparison statements by using:

 and

o Both comparisons must be True for this to evaluate to True

 or

o At least one comparison must be True for this to evaluate to True

For example:
num = 500

(500 <= num) and (num <= 1000) # True

num > 487 or num <= 342 # True

num > 487 and num <= 342 # False

 ("hello" == "hello") and ("dog" == "cat") # False

"hello" == "hello" or "dog" == "cat" # True

You do not have to use parentheses around a comparison statement, but it
does have the benefit of making your code clearer and easier to read.

A third logical operator available to you is called not. This operates on one

logical statement, “flipping” the truth value of that statement. So, a logical
statement that is True will be flipped to False, and a logical statement that

is False will be flipped to True.

For example:

isDog = True

not isDog # False

"dog" == "cat" # False

not ("dog" == "cat") # True

(4 > 5) # False

not (4 > 5) # True

5 > 4 # True

not (5 > 4) # False

CMSC 201 – Computer Science I for Majors Page 6

Part 1E: Review – Decision Structures

Being able to make comparisons is only the first step. We also need a structure
to execute different code based on the value of a comparison. There are three
such structures available: “if”, “if-else”, and

“if-elif-else”. These structures combine with one or more logical

statements to form a decision structure.

A basic “if” statement looks like this:

if age >= 65:

 print("If you are", age, "you are old.")

The print() statement is only executed if the value of the variable age is

larger than or equal to 65. Whatever is “inside” the if statement (meaning

one indentation level in) will be executed if the statement evaluates to True.

What if you want something different to happen if the logical statement is not
True? To do this, just use an “else” statement right after an “if” like so:

if age >= 65:

 print("If you are", age, "you are old.")

else:

 print("If you are", age, "you are young.")

What if there are several related logical statements you need to test? Simply
use an “elif” statement combined with an “if.”

if age >= 65:

 print("If you are", age, "you are old.")

elif age >= 45:

 print("If you are", age, "you are middle aged.")

elif age >= 25:

 print("If you are", age, "you're a young adult.")

else:

 print("If you are", age, "you are young.")

Important: The very first logical statement that evaluates to True will have

its associated code executed, and everything else will be skipped over.
Also, you must have an “if” statement before you use any “elif” statements

or an “else” statement.

CMSC 201 – Computer Science I for Majors Page 7

Part 2: Exercises

In class, we’ve discussed using sequential and decision structures to control
the “flow” of your code. Decision structures like if, elif, and else allow a

Python program to execute a set of statements only if certain conditions are
True (or False).

In this lab, you’ll be creating two files: colors.py and adopt.py, both of

which will make use of comparisons and decision structures. Both files will be
counted as part of the grade for Lab 3.

Tasks

 Create a colors.py file from scratch

 Run and test your colors.py file

 Create an adopt.py file from scratch

 Run and test your adopt.py file

 Show your work to your TA

CMSC 201 – Computer Science I for Majors Page 8

Part 3A: Creating Your Files

First, create the lab3 folder using the mkdir command -- the folder needs

to be inside your Labs folder as well. (If you need a reminder of how to

create and navigate folders, try asking a classmate next to you for help. If
you’re both stuck, ask the TA or refer to the instructions for Lab 1.)

Next, create two Python files (colors.py and adopt.py) using the “touch”

command in GL.
The “touch” command creates a new blank file, but doesn’t open it.

Once a file has been “touched”, you can open and edit it using emacs.
 touch colors.py

 touch adopt.py

The first thing you should do with any new Python file is create and fill out the
comment header block at the top of your file. Here is a template:

File: FILENAME.py

Author: YOUR NAME

Date: 2/TODAY/2017

Section: YOUR SECTION NUMBER

E-mail: USERNAME@umbc.edu

Description: YOUR DESCRIPTION GOES HERE AND HERE

YOUR DESCRIPTION CONTINUED SOME MORE

CMSC 201 – Computer Science I for Majors Page 9

Part 3B: School Spirit (colors.py)

This is the first of two programs that must be written for this lab.
This first program uses a simple if-else block, and compares strings for

equivalence. First, the program asks the user for their favorite color. If the
input is “black” or “gold” exactly, it should tell the user that they have school
spirit.

Using a single if statement, check if the input matches “black” or “gold (in
lowercase).

 If the input is “black” or “gold” print:
o Love your school spirit!

 Otherwise, print:
o COLOR is an okay color, I guess.
o (Where COLOR is the color the user input.)

(Python is case-sensitive, so "gold" is not the same as "Gold" or "GOLD" when
comparing strings.)
Hint: Don’t forget that the Boolean operators "and" and "or" exist!

Here is some sample output, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python colors.py

Please enter your favorite color: blue

blue is an okay color, I guess.

bash-4.1$ python colors.py

Please enter your favorite color: gold

Love your school spirit!

bash-4.1$ python colors.py

Please enter your favorite color: GOLD

GOLD is an okay color, I guess.

bash-4.1$ python colors.py

Please enter your favorite color: black

Love your school spirit!

CMSC 201 – Computer Science I for Majors Page 10

Part 3C: Adoption Fee (adopt.py)

This is the second of two programs that must be written for this lab.
This second program requires the use of slightly more complex decision
structures, and is used to calculate the adoption fee for a dog based on the
age and size of the dog.

The program should ask the user for the dog’s age (in months), and its weight
(in pounds), storing both variables as integers.

Using decision structures, calculate the adoption cost following these rules:

 If the dog is 18 months old or younger
o The adoption fee is $400

 If the dog is older than 18 months, but no more than 48 months
o The adoption fee is $300

 If the dog is older than 48 months
o The adoption fee is $200

 Additionally, if the dog weighs over 100 pounds
o The adoption fee is increased by $50 (to cover extra medical costs)

HINT: The last requirement may be most easily coded as a separate if
statement, independent of the statements that calculate the “base” adoption
fee based on age.

(See the next page for sample output.)

CMSC 201 – Computer Science I for Majors Page 11

Here is some sample output for adopt.py, with the user input in blue.

(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python adopt.py

Welcome to the CMSC 201 Dog Shelter

Thank you for choosing to adopt a dog.

Please input the dog's age in months: 2

Please input the dog's weight in pounds: 45

The total adoption cost is $ 400

Enjoy your new lifelong friend!

bash-4.1$ python adopt.py

Welcome to the CMSC 201 Dog Shelter

Thank you for choosing to adopt a dog.

Please input the dog's age in months: 48

Please input the dog's weight in pounds: 100

The total adoption cost is $ 300

Enjoy your new lifelong friend!

bash-4.1$ python adopt.py

Welcome to the CMSC 201 Dog Shelter

Thank you for choosing to adopt a dog.

Please input the dog's age in months: 60

Please input the dog's weight in pounds: 120

The total adoption cost is $ 250

Enjoy your new lifelong friend!

bash-4.1$ python adopt.py

Welcome to the CMSC 201 Dog Shelter

Thank you for choosing to adopt a dog.

Please input the dog's age in months: 15

Please input the dog's weight in pounds: 137

The total adoption cost is $ 450

Enjoy your new lifelong friend!

CMSC 201 – Computer Science I for Majors Page 12

Part 4: Completing Your Lab

Since this is an in-person lab, you do not need to use the submit command to

complete your lab. Instead, raise your hand to let your TA know that you are
finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

Tasks

As a reminder, here are the tasks again:
 Create a colors.py file from scratch

 Run and test your colors.py file

 If the user enters “black” or “gold”, they have school spirit
 Create an adopt.py file from scratch

 Run and test your adopt.py file

 Calculate adoption fee based on age and size of dog
 Show your work to your TA

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

